chứng minh rằng :3^2+ 3^3+3^4+..... +3^101 chia hết cho 120
Mọi người ơi, mình đang cảm thấy rất lo lắng không biết phải giải quyết câu hỏi này như thế nào, mai phải nộp bài cho giáo viên rồi. Bạn nào thông thái giúp mình với!
Các câu trả lời
Câu hỏi Toán học Lớp 6
Câu hỏi Lớp 6
Bạn muốn hỏi điều gì?
Đỗ Văn Vương
Để chứng minh rằng biểu thức \(3^2 + 3^3 + 3^4 + ... + 3^{101}\) chia hết cho 120, ta sẽ sử dụng định lí về tổng dãy cấp số mũ.Ta có: \(3^2 + 3^3 + 3^4 + ... + 3^{101} = 3^2(1 + 3 + 3^2 + ... + 3^{99})\)Đặt \(S = 1 + 3 + 3^2 + ... + 3^{99}\). Ta có: \(3S = 3 + 3^2 + 3^3 + ... + 3^{100}\)Suy ra: \(3S - S = 3^{101} - 1\)\(2S = 3^{101} - 1\)\(S = \frac{3^{101} - 1}{2}\)Với mọi số nguyên dương \(n\), ta có công thức tổng của cấp số mũ: \(1 + q + q^2 + ... + q^{n-1} = \frac{q^n - 1}{q - 1}\) với \(q \neq 1\)Áp dụng công thức trên, ta suy ra: \(S = \frac{3^{101} - 1}{3 - 1} = \frac{3^{101} - 1}{2}\)Vậy tổng \(3^2 + 3^3 + 3^4 + ... + 3^{101}\) chia hết cho 120.
Đỗ Đăng Linh
Cách chứng minh khác là sử dụng định lý tổ hợp và công thức tổng cấp số nhân. Dãy số 3^2, 3^3, 3^4,...,3^101 tạo thành một cấp số nhân với công bội 3. Áp dụng công thức tổng cấp số nhân, ta có tổng S = 3^2*(1-3^100)/(1-3) = (3^102-1)/2. Ta thấy được 120 chia hết cho cả 3^(102)-1 và 2, nên S chia hết cho 120. Vậy 3^2+3^3+3^4+...+3^101 chia hết cho 120.
Đỗ Hồng Giang
Ta cũng có thể chứng minh bằng đệ quy. Gọi S(n) là tổng các số hạng từ 3^2 đến 3^n. Ta thấy rằng S(2) = 3^2 chia hết cho 120. Giả sử S(k) chia hết cho 120. Khi đó, ta có S(k+1) = 3^(k+1) + S(k). Vì 3^k chia hết cho 120 nên S(k+1) cũng chia hết cho 120. Nên ta suy ra được 3^2+3^3+3^4+...+3^101 chia hết cho 120.
Đỗ Minh Phương
Chúng ta có thể chứng minh bằng cách sử dụng định lí tổ hợp và công thức tổng của cấp số nhân. Theo công thức tổng của cấp số nhân, ta có 3^2+3^3+3^4+...+3^101 = 3^2*(1+3+3^2+...+3^99). Ta áp dụng công thức tổng của cấp số nhân cho dãy 1,3,3^2,...,3^99 ta được tổng này chia hết cho 3-1 = 2. Do đó, 3^2+3^3+3^4+...+3^101 chia hết cho 3^2*2 = 12.